Understanding Multiple Myeloma, Its Treatment, and New Discoveries: Part 2

Presented as a Live Webinar

Wednesday, August 19, 2015 1:00 p.m. – 2:00 p.m. EDT

On-demand Activity

Live webinar recorded and archived to be watched at your convenience Available after October 1, 2015

www.ashpadvantage.com/multmyeloma

ashp[®]Advantage

Planned by ASHP Advantage and supported by an educational grant from Onyx Pharmaceuticals Inc., a subsidiary of Amgen Inc.

Activity Overview

This educational activity will review the management of patients with multiple myeloma with refractory disease and how to apply supportive care strategies. New therapies in development that have the potential to radically change the treatment and clinical course of the disease will also be discussed. Patient case scenarios will be used to highlight decision points in managing patients with multiple myeloma.

Learning Objectives

At the conclusion of this application-based educational activity, participants should be able to

- Evaluate treatment regimens for patients with relapsed, refractory multiple myeloma.
- Illustrate strategies for addressing the supportive care needs of patients with multiple myeloma who experience adverse reactions or develop complications.
- Examine how current approaches to the treatment of multiple myeloma may evolve based on recent clinical trial data and new treatment discoveries.

List of Abbreviations

For a list of abbreviations used in the activity, please see pages 23-24.

Continuing Education Accreditation

ASHP is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. This activity provides 1.0 hour (0.1 CEU – no partial credit) of continuing pharmacy education credit (ACPE activity #0204-0000-15-453-L01-P for the live activity and ACPE

activity #0204-0000-15-453-H01-P for the on-demand activity).

Participants will process CPE credit online at <u>http://elearning.ashp.org/my-activities</u>. CPE credit will be reported directly to CPE Monitor. Per ACPE, CPE credit must be claimed no later than 60 days from the date of the live activity or completion of a home-study activity.

Webinar Information

Visit www.ashpadvantage.com/multmyeloma to find

- Webinar registration link
- Group viewing information and technical requirements
- <u>CPE webinar processing information</u>

Additional Educational Activities

• On-demand activities based on Part 1 and Part 2 live webinars (1 hour CPE for each activity, available after October 1, 2015) – Please note that individuals who claim CPE credit for the live webinar are ineligible to claim credit for the on-demand activity

www.ashpadvantage.com/multmyeloma

Activity Faculty

Christopher A. Fausel, Pharm.D., M.H.A., BCOP

Clinical Manager, Oncology Pharmacy Indiana University Health Indianapolis, Indiana

Christopher A. Fausel, Pharm.D., M.H.A, BCOP, is Clinical Manager of Oncology Pharmacy at Indiana University Simon Cancer Center (IUSCC) in Indianapolis, Indiana. He oversees the clinical and dispensing pharmacy services at the IUSCC ambulatory infusion center and four satellite infusion clinics. Dr. Fausel also holds academic appointments at the Department of Medicine at Indiana University School of Medicine, Purdue University School of Pharmacy and Pharmaceutical Sciences, and Butler University College of Pharmacy.

Dr. Fausel received his Bachelor of Science degree in pharmacy and Doctor of Pharmacy degree from Albany College of Pharmacy in Albany, New York. He completed an ASHP-accredited pharmacy practice residency at Samuel S. Stratton VA Medical Center in Albany, New York. More recently, he earned a Master of Health Administration degree from Simmons College in Boston, Massachusetts.

Dr. Fausel is the founding Residency Program Director for the postgraduate year two (PGY-2) oncology pharmacy residency at Indiana University Health. He chairs two Institutional Review Boards (IRBs) for Indiana University and serves on the IRB Executive Committee for the university.

Dr. Fausel is a board-certified oncology pharmacist, and he is certified in basic life support by the American Red Cross. He is Chairman of the Board of the Hoosier Cancer Research Network and a long-standing member of ASHP, American Society of Clinical Oncology, and Hematology/Oncology Pharmacy Association.

Understanding Multiple Myeloma, Its Treatment, and New Discoveries: Part 2

R. Donald Harvey, Pharm.D., FCCP, BCOP

Associate Professor, Hematology/Medical Oncology Emory University School of Medicine Director, Phase 1 Clinical Trials Section Winship Cancer Institute of Emory University Atlanta, Georgia

R. Donald Harvey, Pharm.D., FCCP, BCOP, is Associate Professor in the Department of Hematology and Medical Oncology at the Emory University School of Medicine in Atlanta, Georgia. He also is Director of the Phase 1 Clinical Trials Section at Winship Cancer Institute of Emory University. In addition, Dr. Harvey serves as Co-chair of the Data Safety and Monitoring Committee and as a Pharmacology representative on the Clinical and Translational Research Committee for the cancer center, as well as preceptor for the postgraduate year 2 (PGY-2) oncology residency at Emory University Hospital.

Dr. Harvey received his Bachelor of Science in Pharmacy and Doctor of Pharmacy degrees from the University of North Carolina (UNC) in Chapel Hill. He subsequently completed a pharmacy practice residency at the University of Kentucky Medical Center and College of Pharmacy and a hematology/oncology specialty residency at UNC Hospitals and School of Pharmacy.

Dr. Harvey is a board-certified oncology pharmacist and a fellow of the American College of Clinical Pharmacy. He has authored or co-authored over 60 peer-reviewed publications and is section editor for original research for the Journal of Hematology Oncology Pharmacy. He serves as a reviewer for the *British Journal of Cancer, Journal of Pharmaceutical and Biomedical Analysis, Cancer, Annals of Oncology, Pharmacotherapy,* and *Journal of Clinical Pharmacology*. Dr. Harvey is a past president of the Hematology/Oncology Pharmacy Association (HOPA), and he now serves as Chair of the HOPA Research Foundation.

Disclosure Statement

In accordance with the Accreditation Council for Continuing Medical Education's Standards for Commercial Support and the Accreditation Council for Pharmacy Education's Guidelines for Standards for Commercial Support, ASHP Advantage requires that all individuals involved in the development of activity content disclose their relevant financial relationships. A commercial interest is any entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients. A person has a relevant financial relationship if the individual or his or her spouse/partner has a financial relationship (e.g., employee, consultant, research grant recipient, speakers bureau, or stockholder) in any amount occurring in the last 12 months with a commercial interest whose products or services may be discussed in the educational activity content over which the individual has control. The existence of these relationships is provided for the information of participants and should not be assumed to have an adverse impact on presentations.

All faculty and planners for ASHP Advantage education activities are qualified and selected by ASHP Advantage and required to disclose any relevant financial relationships with commercial interests. ASHP Advantage identifies and resolves conflicts of interest prior to an individual's participation in development of content for an educational activity.

- R. Donald Harvey, Pharm.D., FCCP, BCOP, declares that he has served as an advisor for Bristol-Myers Squibb, Onyx Pharmaceuticals Inc., and Takeda Pharmaceuticals. He has also participated in research activities funded by Acetylon Pharmaceuticals, Inc.; Bristol-Myers Squibb; Calithera Biosciences; Celgene Corporation; Cleave Biosciences; Novartis Pharmaceuticals; Onyx Pharmaceuticals Inc.; Sanofi; and Takeda Pharmaceuticals.
- All other faculty and planners report no financial relationships relevant to this activity.

Understanding Multiple Myeloma, Its Treatment, and New Discoveries: Part 2

R. Donald Harvey, Pharm.D., FCCP, BCOP Emory University School of Medicine Winship Cancer Institute of Emory University Atlanta, Georgia

Christopher A. Fausel, Pharm.D., M.H.A., BCOP Indiana University Simon Cancer Center Indiana University Health Indianapolis, Indiana

Learning Objectives

- Evaluate treatment regimens for patients with relapsed, refractory multiple myeloma
- Illustrate strategies for addressing the supportive care needs of patients with multiple myeloma who experience adverse reactions or develop complications
- Examine how current approaches to the treatment of multiple myeloma may evolve based on recent clinical trial data and new treatment discoveries

The First Webinar

- Background on clinical features of multiple myeloma
- Update on current therapies for initial treatment of multiple myeloma
- Tools to help develop an individualized therapeutic plan for patients from stateof-the-art clinical trial data

See enlargement p. 16

See enlargement p. 16

Carfilzomib differs from bortezomib because

- a. It can be given subcutaneously
- b. Neuropathy is less common
- c. Platelet counts are not affected
- d. It does not increase risk for herpes infections

Patient Case Scenario

- FR is a 67-year-old patient with myeloma diagnosed in 2011, who received bortezomib and dexamethasone induction for 8 cycles followed by autologous stem cell transplant (SCT) with high-dose melphalan
- She presents with relapsed disease following SCT, and treatment with carfilzomiblenalidomide-dexamethasone (CRd) is being considered

Which of the following considerations is important in FR for treatment selection with CRd?

a. Cardiac history

c. Neuropathy history

d. Mucositis with SCT

b. Bone disease

Considerations Single-agent versus combination therapies in relapsed/refractory disease Patient health may worsen with additional treatment and disease progression Performance status Comorbidities, treatment-emergent adverse events Combination trials of agents active in relapsed/refractory disease ongoing Carfilzomib + pomalidomide

See enlargement p. 17

See enlargement p. 17

Parameter	Carfilzomib + Len + Dex	Len + Dex
PFS	26.3 months	17.6 months
OS at 24 months	73.3%	65%
RR	87.1%	66.7%
CR	31.8%	9.3%
Mean time to response	1.6 months	2.3 months
Median duration of response	28.6 months	21.2 months

Toxicity				
Parameter (≥ Grade 3)	Carfilzomib + Len + Dex	Len + Dex		
Diarrhea	4%	4%		
Fatigue	8%	6%		
Pyrexia	2%	1%		
Upper respiratory infection	2%	1%		
Hypokalemia	9%	5%		
Muscle spasms	1%	1%		
Dyspnea	3%	2%		
Hypertension	4%	2%		
Acute renal failure	3%	3%		
Cardiac failure	4%	2%		
Ischemic heart disease	3%	2%		
Stewart AK et al. N Engl J Med. 2015; 372:142				

See enlargement p. 18

Parameter	Pom + Dex (n=302)	Dex (n=153)
PFS	4.0 months	1.9 months
OS	12.7 months	8.1 months
TTP	4.7 months	2.1 months
ORR	31%	10%
CR/VGPR	6%	<1%

Toxicity		
Toxicity	Pom + Dex (n=302)	Dex (n=153)
Neutropenia	48%	16%
Anemia	33%	37%
Thrombocytopenia	22%	26%
Leukopenia	9%	3%
Febrile neutropenia	10%	0%
Pneumonia	13%	8%
Infection	30%	24%
Bone pain	7%	5%
Dyspnea	5%	5%

Parameter	Panobinostat Arm	Control Arm
Median PES	12 months	8 months
2-vear PFS	20.6%	8.4%
Median OS	33.64 months	30.39 months
RR	60.7%	54.6%
CR	11%	6%
Near CR	17%	10%
Median time to response	1.51 months	2 months

Parameter	Panobinostat Arm (n = 387)	Control Arm (n = 381)
Thrombocytopenia	68%	31%
Lymphopenia	54%	40%
Leukopenia	24%	8%
Neutropenia	35%	11%
Anemia	18%	19%
Diarrhea	25%	8%
Peripheral neuropathy	18%	15%
Asthenia/fatigue	24%	13%
Nausea	6%	2%
Vomiting	8%	1%
Pneumonia	13%	11%

Panobinostat FDA Review

- Boxed warnings in package insert
 Severe diarrhea
 - Cardiac events (including fatalities)
- Myelosuppression/bleeding/hepatotoxicity
- Risk evaluation and mitigation strategy program requirement
- FDA action taken under the accelerated approval program and the drug is designated as an orphan drug
- Further trials are required to confirm clinical benefit

Food and Drug Administration. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm435296.htm (accessed 2015 Jul 27).

See enlargement p. 19

Parameter	Elotuzumab (n=321)	Control (n=325)
PFS – 1 year	68%	57%
PFS – 2 year	41%	27%
Median PFS	19.4 months	14.9 months
Overall RR	79%	66%
CR	4%	7%
VGPR	28%	21%
PR	46%	38%
Minimal response/stable disease	16%	27%

Parameter	Elotuzumab (n=318)	Control (n=317)
Lymphocytopenia	77%	49%
Neutropenia	34%	44%
Anemia	19%	21%
Thrombocytopenia	19%	20%
Fatigue	8%	8%
Back pain	5%	4%
Diarrhea	5%	4%
Pyrexia	3%	3%
Insomnia	2%	3%
Peripheral edema	1%	1%
Constipation	1%	1%

Future Drug Targets in MM				
	Cell Surface Targets	Cytokines	BM Stroma	Adhesion Molecules
	CD38	IL-6	NF-κB	ICAM-1
	FGFR3	IGF-1	Smad	VCAM-1
	SLAMF7 (CS1)	SDF-1α	ERK	Fibronectin
	BAFF-R	BAFF	C-Myc	LFA-1
	VEGFR	APRIL	PIM Kinase	MUC-1
		BSF-3		VLA-4
BSF-3 VLA-4 FGFR = fibroblast growth factor receptor; BAFF-R = B-cell activating receptor; VEGFR vascular endothelial growth factor receptor; IL = interleukin; IGF = insulin-like growth factor; SDF = stroma cell-derived factor; APRIL = A Proliferation=inducing ligand; BSF B-cell stimulating factor; NF-kB = nuclear factor kB; ICAM = intercellular adhesion molecule; VCAM = vascular cell adhesion molecule; LFA = lymphocyte function-associated antigen; MUC = mucin; VLA = very late antigen. Anderson KC. J Clin Oncol. 2012; 30:445-5				

Patient Case Scenario

- FR receives her first 2 cycles of CRd (carfilzomib-lenalidomide-dexamethasone) without complications
- During her 3rd cycle, however, she is admitted for febrile neutropenia and develops renal insufficiency following IV contrast
- Her creatinine clearance is now 25 mL/min, down from 65 mL/min

How should CRd in FR be approached?

- a. The regimen should be discontinued
- b. Her carfilzomib should be reduced
- c. Her lenalidomide should be reduced
- d. No dose changes to the regimen

Supportive Care

The correct pairing of drug with adverse event is

- a. Pomalidomide causes renal dysfunction
- b. Carfilzomib causes thromboses
- c. Bortezomib increases risk of cardiac dysfunction
- d. Lenalidomide causes neutropenia

Toxicities and Complications				
Drug	Toxicity	Management		
Thalidomide, lenalidomide, pomalidomide	Venous thromboembolism (VTE)	Anticoagulation prophylaxis when combined with corticosteroids		
Lenalidomide	Renal dysfunction (needs dose adjustment to prevent neutropenia and thrombocytopenia)	Adjust dose per prescribing information or avoid until renal function normalizes		
Bortezomib	Peripheral neuropathy	Administer weekly, subcutaneous preferred over IV; carfilzomib has much lower rates of neuropathy		
Bortezomib, Carfilzomib	Herpes zoster reactivation	Acyclovir or valacyclovir prophylaxis		
Carfilzomih	Cardiac complications	Start at lower dose then titrate up		
Garnizoffilb	Nephrotoxicity	Hydration		
Corticosteroids	Hyperglycemia	Weekly corticosteroids preferred; sliding scale insulin and close monitoring in diabetic patients		

See enlargement p. 19

Adjusting Therapy for End-Organ Dysfunction				
Drug	Primary Route of Metabolism	Recommendations for Dosage Modification		
Melphalan	Hydrolysis	Yes – reduce dose in hematopoietic SCT conditioning to 140 mg/m ²		
Thalidomide	Renal	None		
Lenalidomide	Renal	Adjust dose with CrCl <60 mL/min		
Pomalidomide	Hepatic	None (ongoing study in renal dysfunction)		
Bortezomib	Hepatic	Yes – reduce for elevated bilirubin		
Carfilzomib	Peptidase cleavage and epoxide hydrolysis	None		
Bisphosphonates	Renal	Yes – reduce for renal impairment		
CrCl = creatinine cle	CrCl = creatinine clearance			

See enlargement p. 20

Renal Impairment (IMWG)

Estimated GFR using modification of diet in renal disease equation

- RIFLE and Acute Renal Injury Network Criteria

Bortezomib-dexamethasone to rapidly reverse

Lenalidomide may be used if dose adjusted for

Rapid intervention to reverse renal damage

See enlargement p. 20

Skeletal Related Events

- Hypercalcemia of malignancy
- Pathologic fracture
- Bone pain
- Spinal cord compression
- · Radiation therapy to the bone
- Bone surgery

• Melphalan 140 mg/m² for CrCl <60 mL/min

disease-induced nephropathy

GFR = glomerular filtration rate

GFR

Acute renal injury

RIFLE = risk, injury, failure, loss, and end-stage kidney disease IMWG = International Myeloma Working Group

IMWG = International Myeloma Working Group Dimopoulos MA et al. J Clin Oncol. 2010; 28:4976-84.

Body JJ. Support Care Cancer. 2006;14:408-18.

Bone Disease (IMWG)

- Summary and comparison of existing guidelines (NCCN, ESMO, ASCO, Mayo, EMN)
- Compiled clinical trial data through August 2012
- Used level and grade of evidence convention to characterize recommendations
- Provide specific recommendation for bisphosphonates (BPs), surgery, and radiation

ESMO = European Society for Medical Oncology ASCO = American Society of Clinical Oncology EMN = European Myeloma Network

Terpos E et al. J Clin Oncol. 2013; 31:2347-57

Bisphosphonate Recommendations

Patient Population	Recommendation	
MM patients with detectable osteolytic lesions by conventional radiography receiving antimyeloma therapy	Pamidronate or zoledronic acid	
Low-and intermediate-risk asymptomatic MM if osteoporosis documented	BP recommended	
Osteoporosis in MGUS	BP recommended	
Solitary lytic lesion and no evidence of osteoporosis	No BP therapy	
Patients with solitary plasmacytoma	No BP therapy	
Terpos E et al. J Clin Oncol. 2013: 31:2347-5		

Bisphosphonate Recommendations

- Pamidronate 30 and 90 mg have shown comparable efficacy in preventing skeletal-related events
 - IV is the preferred route of administration given at 3- to 4week intervals
- Optimal duration for zoledronic acid is at least 2 years
- For patients not achieving CR or VGPR, pamidronate may be continued at prescriber discretion
- For patients in CR or VGPR, optimal duration ranges from 12 to 24 months
- Calcium and vitamin D3 supplementation should be used

Terpos E et al. J Clin Oncol. 2013; 31:2347-57.

Osteonecrosis of the Jaw

- Patients should be educated and receive a comprehensive dental examination
- Existing dental conditions should be treated before initiating BP therapy
- Following BP initiation, unnecessary dental procedures should be avoided with dental health evaluated annually
- Temporary suspension of BP therapy for 90 days before and after invasive dental work

Terpos E et al. J Clin Oncol. 2013; 31:2347-57.

Denosumab in Myeloma

- Treatment of myeloma bone involvement not recommended
- · Hypercalcemia and renal impairment
 - Denosumab pharmacokinetics not affected by renal impairment
 - Bisphosphonate refractory hypercalcemia
 - Risk of hypocalcemia
 - Optimal dosing: 120 mg vs. 60 mg vs. 3 mg/kg?

Henry DH et al. J Clin Oncol. 2011;29:1125-32. Cicci JD et al. Clin Lymphoma Myeloma Leuk. 2014; 14:e207-11. Hu MI et al. J Clin Endocinol Metab. 2014; 99:3144-52.

iventor	ry-Sh	ort Form "av	verage pain"	0-10 scale
		Efficacy of	Duloxetine	
		Duloxetine	Placebo	P Value
Mea Decrea Pai	an Ise in N	1.06 (95% CI, 0.72-1.40)	0.34 (95% CI, 0.01-0.66)	<i>P</i> =.003

Optimal thromboprophylaxis in patients without cardiac history treated with immunomodulators is

- a. Full-dose rivaroxaban
- b. Mini-dose warfarin
- c. Low-dose aspirin
- d. Full-dose low molecular weight heparin (LMWH)

Baseline Risk for VTE

Parameter	VTE Rate
MGUS	6.1%
MM	3 – 10%
Dexamethasone induction	3 – 4%
Thalidomide-dexamethasone (high-dose) induction	14 – 26%
Lenalidomide-dexamethasone (high-dose) induction	26%
Lenalidomide-dexamethasone (low-dose) induction	12%
Srkalovic G et a Sallah S et al. , Rajkumar SV et al. , Rajkumar SV et al. , <i>L</i> a	I. Cancer. 2004; 101:558-6 Ann Oncol. 2004; 15:1490 I Clin Oncol. 2006; 24:431 ancet Oncol. 2010; 11:29-3

Treatment Arm	VTE Rate During First 6-Month Observation	Cumulative Proportion of VTE Events at 12 Months	Major Bleeding
Aspirin 100 mg/day (n=176)	2.27%	2.3%	0
Low molecular weight heparin 40 mg/day (n=166)	1.2%	1.8%	0
P value	0.452	NR	NA

Prophylaxis for
Thalidomide-DexamethasoneParametersAspirin
(100 mg/day)
(n=220)Warfarin
(1.25 mg/day)
(n=220)LMWH
(40 mg/day)
(n=219)

Conclusion

- Patients with relapsed/refractory multiple myeloma should have treatment selected based on prior therapies and goals of treatment
- Adverse events of these treatments may be specific to agent class (e.g., thrombotic events) or more broad (e.g., cytopenias) and should be assessed prior to beginning treatment
- Investigational agents with novel targets will continue to improve patient outcomes

Key References

- Nooka AK, Kastritis E, Dimopoulos MA, Lonial S. Treatment options for relapsed and refractory multiple myeloma. *Blood.* 2015; 125:3085-99.
- Varga C, Laubach J, Hideshima T et al. Novel targeted agents in the treatment of multiple myeloma. *Hematol Oncol Clin North Am.* 2014; 28:903-25.
- Raje NS, Yee AJ, Roodman GD. Advances in supportive care for multiple myeloma. *J Natl Compr Canc Netw.* 2014; 12:502-11.

Questions?

Toxicities and Complications			
Drug	Toxicity	Management	
Thalidomide, lenalidomide, pomalidomide	Venous thromboembolism (VTE)	Anticoagulation prophylaxis when combined with corticosteroids	
Lenalidomide	Renal dysfunction (needs dose adjustment to prevent neutropenia and thrombocytopenia)	Adjust dose per prescribing information or avoid until renal function normalizes	
Bortezomib	Peripheral neuropathy	Administer weekly, subcutaneous preferred over IV; carfilzomib has much lower rates of neuropathy	
Bortezomib, Carfilzomib	Herpes zoster reactivation	Acyclovir or valacyclovir prophylaxis	
Carfilzomib	Cardiac complications	Start at lower dose then titrate up	
	Nephrotoxicity	Hydration	
Corticosteroids	Hyperglycemia	Weekly corticosteroids preferred; sliding scale insulin and close monitoring in diabetic patients	

Adjusting Therapy for End-Organ Dysfunction			
Drug	Primary Route of Metabolism	Recommendations for Dosage Modification	
Melphalan	Hydrolysis	Yes – reduce dose in hematopoietic SCT conditioning to 140 mg/m ²	
Thalidomide	Renal	None	
Lenalidomide	Renal	Adjust dose with CrCl <60 mL/min	
Pomalidomide	Hepatic	None (ongoing study in renal dysfunction)	
Bortezomib	Hepatic	Yes – reduce for elevated bilirubin	
Carfilzomib	Peptidase cleavage and epoxide hydrolysis	None	
Bisphosphonates	Renal	Yes – reduce for renal impairment	
CrCl = creatinine cle	arance		

Self-assessment Questions

These questions will be discussed during the activity. Record the answers here for your future reference.

- 1. Carfilzomib differs from bortezomib because
 - a. It can be given subcutaneously
 - b. Neuropathy is less common
 - c. Platelet counts are not affected
 - d. It does not increase risk for herpes infections

Questions 2 and 4 refer to the following patient case scenario.

FR is a 67-year-old patient with myeloma diagnosed in 2011, who received bortezomib and dexamethasone induction for 8 cycles followed by autologous stem cell transplant (SCT) with high-dose melphalan. She presents with relapsed disease following SCT, and treatment with carfilzomib-lenalidomide-dexamethasone (CRd) is being considered.

- 2. Which of the following considerations is important in FR for treatment selection with CRd?
 - a. Cardiac history
 - b. Bone disease
 - c. Neuropathy history
 - d. Mucositis with SCT
- 3. Adverse events attributable to panobinostat include
 - a. Fatigue, thrombocytopenia, diarrhea
 - b. Neuropathy, fever, dyspnea
 - c. Hypertension, neutropenia, rash
 - d. Thromboses, infections, hypocalcemia
- 4. FR receives her first 2 cycles of CRd (carfilzomib-lenalidomide-dexamethasone) without complications. During her third cycle, however, she is admitted for febrile neutropenia and develops renal insufficiency following IV contrast. Her creatinine clearance is now 25 mL/min, down from 65 mL/min. How should CRd in FR be approached?
 - a. The regimen should be discontinued
 - b. Her carfilzomib should be reduced
 - c. Her lenalidomide should be reduced
 - d. No dose changes to the regimen
- 5. The correct pairing of drug with adverse event is
 - a. Pomalidomide causes renal dysfunction
 - b. Carfilzomib causes thromboses
 - c. Bortezomib increases risk of cardiac dysfunction
 - d. Lenalidomide causes neutropenia

Understanding Multiple Myeloma, Its Treatment, and New Discoveries: Part 2

- 6. Optimal thromboprophylaxis in patients without cardiac history treated with immunomodulators is
 - a. Full-dose rivaroxaban
 - b. Mini-dose warfarin
 - c. Low-dose aspirin
 - d. Full-dose low molecular weight heparin (LMWH)

List of Abbreviations Used in Presentation

APRIL	a proliferation-inducing ligand
ASCO	American Society of Clinical Oncology
ASCT	autologous stem cell transplant
BAFF-R	B-cell activating receptor
BM	bone marrow
BP	bisphosphonate
BSF	B-cell stimulating factor
CBC	complete blood count
CI	confidence interval
CR	complete response
CRAB	hyperCalcemia, Renal disease, Anemia, Bone disease
CrCl	creatinine clearance
CRd	carfilzomib-lenalidomide-dexamethasone
СТ	computed tomography
CVAD	cyclophosphamide-vincristine-doxorubicin-dexame thas one
CyBorD	cyclophosphamide-bortezomib-dexamethasone
EMD	similar extramedullary disease
EMN	European Myeloma Network
ESMO	European Society for Medical Oncology
FDA	Food and Drug Administration
FGFR	fibroblast growth factor receptor
GFR	glomerular filtration rate
ICAM	intercellular adhesion molecule
IGF	insulin-like growth factor
IL	interleukin
IMiD	immunomodulatory drug
IMWG	International Myeloma Working Group
IV	intravenous
KRd	carfilzomib-lenalidomide-dexamethasone
LFA	lymphocyte function-associated antigen
LMWH	low molecular weight heparin
MGUS	monoclonal gammopathy of undetermined significance
MM	multiple myeloma
MRI	magnetic resonance imaging

Understanding Multiple Myeloma, Its Treatment, and New Discoveries: Part 2

MUC	mucin
NCCN	National Comprehensive Cancer Network
NF-kB	nuclear factor kB
NSAIDs	nonsteroidal anti-inflammatory drugs
ORR	overall response rate
OS	overall survival
PCD	pomalidomide-carfilzomib-dexamethasone
PCL	plasma cell leukemia
PET	positron emission tomography
PFS	progression free survival
РО	by mouth
PR	partial response
PVD	pomalidomide-bortezomib-dexamethasone
Rd	lenalidomide-dexamethasone
RIFLE	risk, injury, failure, loss, and end-stage kidney disease
RR	response rate
RVD	bortezomib-lenalidomide-dexamethasone.
SCT	stem cell transplant
SDF	stroma cell-derived factor
TTP	time to progression
VCAM	vascular cell adhesion molecule
VDT-PACE	bortezom ib-dexame thas one-thal idom ide-cisplat in-dox or ubic in-cyclophosphamide-etoposide
VEGFR	vascular endothelial growth factor receptor
VGPR	very good partial response
VLA	very late antigen
VZV	varicella-zoster virus